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Abstract

In the typical Reinforcement Learning (RL) setting we are given a single task
and then learn an optimal policy for it. However, in many real-world settings,
multiple different tasks are available for training. Depending on whether we aim
to perform well on one or all of the tasks we have one of two problem settings:
Curriculum Learning, in which we have a set of tasks and want to use them
to quickly learn a specific target task, or Multi-Task RL, in which we want to
achieve a good performance in all given tasks. While there is previous work in
both settings, these approaches usually assume — implicitly or explicitly — all
tasks to be uniformly similar to each other. We argue that this assumption is
limiting and therefore investigate two ways of identifying similarities between
tasks. We then use the learned task relations to speed up training.

Firstly, we propose to use a variational autoencoder to learn a task embedding
in which distances correspond to similarities. We then use the embedding to
determine a curriculum that is able to quickly learn a difficult exploration task
by using experience from easier tasks. We show that our approach is able to learn
a meaningful representation of the task space and improve sample complexity on
a simple discrete task. However, it fails to outperform baselines in a complex
continuous control environment.

Secondly, we investigate the classical Multi-Task setting, for which we pro-
pose a method that clusters together similar tasks. Inspired by the expectation-
maximization algorithm, we use a set of policies and alternately assign each task
to a policy and train the policies on their assigned tasks. This leads to each
policy focusing on a set of related tasks, producing a meaningful clustering that
avoids negative transfer and can speed up training. As our approach can be
combined with any underlying RL method, we evaluate it on a a varied set of
simple discrete and continuous control tasks, as well as complex bipedal walker
tasks and Atari games. Results show a competitive or favorable performance in
all tested environments.
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CHAPTER 1

Introduction

Reinforcement Learning (RL) is a subfield of Machine Learning that addresses
the problem of how an agent can learn to act optimally in an unknown environ-
ment [1]. The agent receives the current state s, chooses an action a, and receives
areward r and a new state s’. This formulation is as powerful as it is general and
has led to many breakthroughs that were previously thought decades beyond the
current state of the field. It managed to, for the first time, beat professional Go
players with AlphaGo in 2015 [2] after which the next big challenge was seen in
complex strategy games such as Dota2 and StarCraft2. In both, RL based ap-
proaches managed to defeat the best human players in 2019 with AlphaStar [3|
and OpenAlFive [4]. However, while there is work on applying reinforcement
learning to real-world tasks, such as robotics [5] or health-care decision mak-
ing [6], most remains academic in nature with few exceptions |7, 8] being applied
in the real-world.

The large difference between games and tasks in the real-world is that training
data is readily available in games while in real-world applications the availability
of training data is limited [9]. To beat humans in Dota2, tens of thousands of
years of game time were necessary [4] and in StarCraft2 180 000 years of game
time were used [3]|. Generating such large amounts of training data is not feasible
in real-world tasks. We, therefore, need to use the data that we can generate as
efficiently as possible. While there are many approaches that deal with this
issue, we focus on a setting in which we have access to multiple tasks, known as
Multi-Task RL [10].

Approaches in this field generally focus on reusing experience from one task
in another. The goal is either to achieve a good performance on all tasks or to
achieve a good performance in a single target task, as in Curriculum Learning
approaches [11]. However, most of the presented methods do not use informa-
tion about the relationship between tasks and assume that they are uniformly
similar to each other. We argue that this is an inappropriate assumption in
many settings. Consider the example in Figure 1.1, showing different track and
field disciplines. Most approaches treat them as a set of tasks without any spe-
cific similarity relationships, as shown in the left. However, sprinting, running
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Figure 1.1: In many settings in Reinforcement Learning we have access to a set of
multiple tasks, here represented by track and field disciplines. Most approaches
treat all tasks as being uniformly similar to each other (left). We hypothesize
that this is disadvantageous in many settings and propose two methods that learn
the relation between tasks: By constructing a task space in which the distance
between tasks corresponds to their dissimilarity (middle) and an approach in-
spired by Expectation-Maximization that clusters similar tasks together in an
unsupervised way (right).

and relay are clearly more similar to each other than they are to hurdle runs or
pole vaulting. Yet they are all more similar to each other than to javelin toss.
A learned task space (middle), in which distance corresponds to dissimilarity,
could capture such relations. However, learning such a detailed structure can be
difficult and costly in complex environments. A simpler structure is to learn a
clustering, as shown on the right in Figure 1.1. Here we only assume that tasks
in a cluster will be more similar to each other than to tasks in other clusters,
without constraining the relations further.

We propose two corresponding approaches: First, we look into learning a task
space, in which the distance between tasks corresponds to their similarity. We
propose a method to identify such a task space based on a Variational Autoen-
coder (VAE) and then use this task space for automatic curriculum learning.
Secondly, we look into directly identifying a clustering of tasks without learning
a full task space. To do so, we propose an approach inspired by Expectation-
Maximization [12]| that uses a set of independent policies. It iteratively evaluates
the policies on all tasks, assigns tasks to policies and then trains each policy
on its assigned tasks. We show that both methods are able to generate inter-
pretable representations of the relations between tasks and can improve sample
complexity.



CHAPTER 2

Background

2.1 Tasks and Markov Decision Processes

In RL, tasks are typically specified by a Markov Decision Process (MDP) defined
as tuple (S, A, P, R,v), with state space S, action space A, transition function
P(s'|s,a), reward function R(s,a,s’) and decay factor v [1]. As we are interested
in reusing experience from different tasks, we require a shared state-space S
and action-space A across tasks. Note, however, that this requirement can be
omitted depending on the policy structure. Following prior work, we use task
specific output layers in the Multi-Layer Perceptron (MLP) used in our Atari
experiments, to account for the different action spaces. In all other experiments
tasks only differ in their transition function and reward function. We therefore
describe a task as 7 = (P, R;) and refer to the set of given tasks as 7.

For a single task our aim is to find a policy that maximizes the discounted
return G = Eizgo ytrs. For multiple tasks we regard two settings: In Curriculum
RL we want to achieve an optimal return in a target task 7* with the least amount
of training steps on all tasks 7 € 7. In Multi-Task RL, we aim to, for each task
7 € T, maximize the discounted return G, = Y /=0 vt where 77 ~ R, (s¢,az)
is the reward at time step ¢ and L is the episode length. Given a set of policies

{m1,..., ™}, we denote the return obtained by policy m; on task 7 as G(7;).

2.2 Reinforcement Learning

Our goal in RL is to learn a policy 7 : § — A that maximizes the expected
return G,(m). A policy that achieves this is called an optimal policy 7*. A
foundational method that can find this optimal policy is @-Learning [13|. In it
we learn the (Q-value of each state-action pair, defined as the expected discounted
return starting with the given state and action Q(s,a) = E[G,(7)|so = s,a0 =
a] = E[X1=0° v're|so = s, a9 = a]. We can estimate this value by performing roll-
outs of an e-greedy policy, that chooses the optimal action a* = arg max, Q(s, a)
with probability (1 —€) and performs a randomly chosen action with probability
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€. We update the values of the state-action pairs that occur during the trajectory
with the temporal-difference rule

Q(s,a) + (1 - @)Q(s,a) + « <rt + 7 max Q(s’,a’)) , (2.1)

with « being the learning rate and s’, a’ being the following state and action.
This method has been shown to converge to the correct optimal policy 7*, with
appropriate values for o and sufficient exploration [13].

2.2.1 DQN

A disadvantage of simple ()-Learning is that it relies on a tabular representation
of the value function which makes it impossible to scale to high-dimensional
environments. An alternative is to use MLPs as function approximators for the
Q-function, parameterized as Q9. However, this was problematic for a long time
due to a set of problems known as the deadly triad - function approximation,
boot-strapping, and off-policy learning - leading to a poor performance [1].

These problems were addressed by Mnih et al. [14] with the introduction
of Deep Q-Networks (DQN). While using essentially the same update-rule as in
(2.1), they use a target network Qg that is used for bootstrapping and is updated
to the parameters of the online network Qg periodically 6’ +— 6. Additionally,
they use a replay buffer D that stores previous transitions and sample batches
of transitions (s, a,r,s’) from it to use in the updates. The MLP Qy is therefore
trained to minimize the loss

2
‘6(0) = E(s,a,r,s/)wD [(Q0(37 a) - (T + ’YH}IE}X Q@’(S/a al))> ] . (2'2)

2.2.2 Distributional RL

While most approaches only learn the expected return as value Q(s, a) = E(G|sg =
s,ap = a), distributional RL aims to provide more accurate estimates by learn-
ing the full distribution over returns. This was shown to improve performance
in Atari games by Bellemare et al. [15]. They introduced C51, an approach
that approximates the distribution with a categorical estimate. Implicit Quan-
tile Network (IQN) [16] builds on this work by representing the distribution by
quantiles.

2.2.3 Policy Gradient Methods

While the methods listed above work well in environments with discrete action
spaces, policies based only on a value function can not directly be applied to
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environments with continuous action spaces.

Instead, policy gradient methods [17] were proposed that represent the policy
7y as a function parameterized by a set of parameters ). With the target J(¢) =
Espm a=my [ t—g ytr¢] and p™ being a policy dependent state distribution, the
policy gradient theorem [17] states that the gradient resolves to:

VT () = Eangr g, [V log s (als) Q" (5, )] (2.3)

This allows the policy to be trained by gradient descend, however, it requires
an estimate of the value function Q7 (s,a). The estimate can be obtained with
monte-carlo methods, generating some sample trajectories under the current pol-
icy or it can be estimated by a separate Q-value estimator. In the latter case, the
value function is referred to as critic and the approach becomes an actor-critic
method.

This result was further extended to the case of deterministic policies by Silver
et al. [18] and then further combined with MLPs as function approximators by
Lillicrap et al. [19]. Similarly to DQN, they use a replay buffer and a target
network for the policy and value function approximators, that is updated as an
exponential moving average 6’ < af + (1 — «)#’. The gradient then resolves to

Vyd (V) = Eswp,a=r, [Vyhy(als)VaQ" (s, a)] (2.4)

with p being a deterministic policy pu, : S — A. This method is known as Deep
Deterministic Policy Gradient (DDPG).

Finally, Fujimoto et al. [20] extend DDPG to Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) and propose three improvements: Firstly, they
use two separate networks (Qg,, Qp,) to represent the value function and use the
minimum of both as target. This reduces a tendency of DDPG to overestimate
the @Q-values. Secondly, they add noise to the target updates, to serve as regular-
ization. Finally, they update the value function more frequently than the policy
to assure an accurate value estimate for use in the policy update.

ij(q/)) = E8~D7a=ﬂ¢ [V¢M¢(a\s)ang1 (s,a)]

2 2.5
E(ez) = E(s,a,r,s’)wD <Q9¢(Sv CL) - (T + 7].11:111112 Inaé}X QG; (S/) CL/))> ] . ( )

2.3 Expectation-Maximization

Expectation-Maximization (EM) [12] is an iterative algorithm for identifying the
parameters of a model with an unobserved latent variable. Its best known appli-
cation is the determination of parameters of a Gaussian mixture model (GMM)
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Figure 2.1: Illustration of an autoencoder. Samples x are input in the encoder
e, which outputs a low-dimensional m, which is then decoded by the decoder d.
For training, the euclidean error ||z — d(e(x))||? is minimized.

p(x) = Zﬁ:l wiN (z; pu, Bi). After the GMM-parameters are initiated, the al-
gorithm consists of two repeating steps: The expectation (E)-step, in which the
responsibility of each Gaussian for a given data point x; is determined with the
current parameters as

_ WpN (35 i, Si)
Sy BN (i i, )

which is followed by a the maximization (M)-step, in which the parameters of the
GMM are adjusted to maximize the likelihood under the current responsibilities:

Ni,k

Y

N ) A A
N oS e o o Rl — ) (@i — )
wk—*g Miks B="Ty—r Xkp= T
n i=1 Zz‘:1 ik Zi:1 ik

More intuitively, Expectation-Maximization (EM) determines soft assign-
ments of samples to one of the clusters during the E-step and uses these as-
signments to reweigh the samples when calculating the Gaussian parameters in
the M-step.

2.4 Autoencoders

Autoencoders are a special type of MLP popularized by Hinton et al. [21]. The
goal of an autoencoder is to find a lower dimensional representation for the ele-
ments of a given dataset. This is achieved by having a network which is trained
to learn an identity function but includes a bottleneck, a hidden layer with sig-
nificantly smaller size than the input. An autoencoder can be trained like any
MLP by using the same sample as input and desired output and training the
weights via gradient descent. The layers before the bottleneck can then be re-
garded as an encoder e(z) with x being the input sample. The layers following



2. BACKGROUND 7

the bottleneck can be regarded as a decoder d(m), with m = e(z) being the latent
code corresponding to sample = from a dataset x ~ D. Generally we want the
dimensionality of m to be significantly smaller than that of x: dimm < dim x.

The loss function for an autoencoder resolves to

Lae = Eonp [lz = d(e(2))[[3] (2.6)

2.4.1 Variational Autoencoders

VAEs are an extension of autoencoders, proposed by Kingma & Welling [22].
While VAEs can be motivated from a variational inference perspective, for our
purposes the main difference is that the encoder parameterizes a distribution
q(m|z) = N(u,X). During training, a sample is drawn from this distribution
and then decoded. The loss is calculated between the decoded sample and the
input. The main advantage, for us, is that the stochastic nature of the encoder
acts as regularization, which encourages a more meaningful, more disentangled
latent representation of the inputs. The loss function of a VAE is known as ELBO
(evidence lower bound) and consists of two terms:

Lerpo = _Ez:q(z\x) logp(xlz) - DKL(Q(Z‘x)‘|p(z)) ) (27)

where Dk, is the Kullback-Liebler distance. The term Dkr,(¢(z|z)||p(2)) can be
interpreted as a regularization, that ensures the distribution of embeddings does
not deviate too far from a previously determined prior p(z), usually a symmetric
zero-mean multivariate Gaussian N (0,I). I is the identity matrix. The other
term E, ;.. [log p(x|2)] is usually referred to as reconstruction loss, as it corre-
sponds to a probabilistic version of the term E,.p|||z — d(e(x))||3] in the normal
autoencoder.

This VAE was then further extended to the S-VAE by Higgins et al. [23].
They allow for an adjustable trade-off between reconstruction and regularization
loss, by changing the loss function to

Lerpo = _Ez:q(z\x) 10gp(.%"2> - /BDKL(Q(Z‘x)‘|p<Z)) ) (28)

with 3 € RT controlling the amount of regularization.



CHAPTER 3

Curriculum Learning with Task
Embeddings

The main idea of curriculum learning is motivated by the way humans learn,
progressing from easy to more difficult tasks. A common example is that children
first learn to crawl, then to walk and finally to run. This idea was introduced to
machine learning in 1985 by Selfridge et al. [24] who propose a learning scheme
to train a controller for cart pole tasks. It was then significantly popularized
again by Bengio et al. in 2009 [25]. They investigate whether curricula are
helpful in a simple supervised learning tasks and find a curriculum starting with
easy tasks and slowly progressing to difficult tasks to be advantageous. Since
then, curriculum learning has been applied to Reinforcement Learning and has
shown to be helpful in various settings [11]. If using the right curriculum, it
allows a quicker convergence to an optimal performance, or a higher final reward.
However, automatically identifying a helpful curriculum is a significant challenge
[11]. While methods have been proposed to identify the optimal curriculum, for
example by phrasing task selection as an MDP [26], these methods require a large
amount of environment interactions to evaluate different curricula before finally
using the best found curriculum for training. These methods are helpful if we
want to identify the optimal curriculum. If our goal, however, is to solve a target
task in the least amount of required environment interactions such approaches
are not efficient.

We therefore propose an approach that determines an effective curriculum
without training a policy on the task itself. Our method works as follows: We
first generate random trajectories in all tasks and then use these to learn a task
embedding using a modified VAE. We then determine the order of tasks in this
embedding space and finally train a policy using this curriculum.
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3.1 Related Work

The related work here is split into two sub-sections: Related work on curriculum
learning, and related work on task embeddings and similar topics.

3.1.1 Curriculum Learning

As there are many applications of curriculum learning, such as learning a loco-
motion policy for uneven surfaces [27] or even in AlphaStar [3], implicitly using
curricula through its AlphaStar League, we will focus mainly on ways of deter-
mining curricula.

Narvekar et al. [26] rephrase curriculum learning into a higher level MDP in
which the state corresponds to the tasks previously trained on and the actions
correspond to picking a task to train on. Svetlik et al. [28] propose to not only
consider sequential curricula, but allow all acyclical graphs as valid curricula.
They propose an approach to identify curricula by a measure of transfer poten-
tial, however, their measure of transfer potential requires full knowledge of the
underlying MDP of each task and is not feasible in complex tasks. Foglino et al.
[29] look into finding a task sequence that results in the maximum cummulative
reward over the full sequence. However all three approaches still use a large num-
ber of training steps to first determine the curriculum, while we aim to learn a
curriculum without much environment interaction. Matiisen et al. [30] propose
an approach with two agents, a teacher and a student. The teacher successively
proposes new tasks that the student learns to solve. They evaluate several dif-
ferent teacher approaches. Sukhbaatar et al. [31] rephrase the teacher-student
interaction as self-play. These approaches are both limited to simple grid-worlds
and it is not obvious how they could be scaled to more complex tasks that we
regard in our work.

In the area of curricula for goal-based RL, Racaniere et al. [32| propose an ap-
proach in which one agent trains to set attainable goals and another agent trains
to solve them. Zhang et al. [33] propose an approach that chooses goals based
on epistemic uncertainty, estimated by the variance of three separate value func-
tions. With ALP-GMM, Portelas et al. [34] propose an approach that chooses
which task to train on in a setting where tasks are continuously parameterized.
They do so by fitting a GMM to datapoints consisting of the task configuration
concatenated with the absolute learning progress on the task. They define abso-
lute learning progress as the difference between the reward on a given task and
the reward on the closest already attempted task. POET [35] also consists of a
student learning tasks presented by a teacher, however, here the new tasks are
generated by a genetic algorithm in which the genes encode the characteristics
of the task. These four approaches all have access to a task space from which
they can select tasks with known parameterizations. In our setting we only have
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access to a fixed set of tasks and do not know their underlying parameters, but
instead learn a task space that they should correspond to.

3.1.2 Task Embeddings and Task Relations

While we are not aware of any previous research learning an embedding space
over tasks, there is some previous work on identifying distances between tasks.

Ferns et al. [36, 37| define a metric between different states in an MDP based
on bisimulation and the Kantorovich and total variation metrics between their
transition functions. This was then extended to a metric between full MDPs
[38]. Unfortunately this metric requires an accurate model of the value of all
states of the MDP and does not scale to complex tasks. Fernandez et al. [39]
defines the distance between tasks based on the reward an agent trained on one
task can obtain in the other task. This distance is thus limited to very similar
environments, and is sensitive even to reward scaling. Lazaric et al. [40] provide
a sample based method to calculate a distance between multiple tasks, as well
as to identify the current task while interacting with it. However, this approach
relies on having an additional model of the environment and iterating over all
collected transitions for each new sample from a target environment. It thus does
not scale to larger tasks. Sinapov et al. [41] assumes that the different tasks are
determined by a set of pre-determined features and then uses the distance between
these as distance between their MDPs. This is of course a strong assumption on
the structure of the environment, which can only be fulfilled in specifically hand-
crafted environments. Wang et al. [42| propose a way to represent MDPs as
graphs and then adapt a graph similarity measure, SimRank [43], for usage with
MDPs. This similarly requires access to the full MDPs and does not scale to
larger tasks.

These approaches could be used to construct a task space, however, as all rely
on usually unavailable knowledge over the underlying MDPs or require trained
agents, we do not pursue them further. Instead, we present an approach that
only uses trajectories from the current agent to determine a task space.

3.2 Variational Task Embedding

We propose a method of learning task embeddings based on variational infer-
ence. We use a VAE with a recurrent encoder that receives a full trajectory
T = (s,a,r,s")1.; and outputs the parameterization of a Gaussian distribution
q(m|T) = N (u,X). A sample m = e(T), with e being the encoder, is drawn from
this distribution and used as additional input to a reward decoder and transi-
tion decoder. They correspond to reward function R and transition function
P, which together specify our task 7 = (R, P;). The reward decoder learns
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e = q(m|t)[~m —

t=1,..T

Figure 3.1: Shown is the structure of the sequential VAE used to learn an em-
bedding over tasks. A full trajectory is input into the recurrent encoder, which
outputs a parameterization of a normal distribution. From this distribution a
sample is drawn representing the current task. This sample is then used as input
for two decoders, representing the reward and transition function. In addition
the decoders receive the other inputs necessary to predict reward (s,a,s’) and
transition (s, a).

a function # = d,(s,a,s’,m), while the transition decoder learns the function
§ = ds(s,a,m). As we defined our tasks to be determined by different reward
and transition functions, it is not possible to accurately predict these values
without knowledge of the current task. Therefore, in order to minimize the re-
construction loss by accurately predicting the reward and transition, the encoder
has to learn a representation of the current task from the given trajectory. While
this leads to the embeddings m representing the task, it does not necessarily lead
their distances corresponding to dissimilarity. However, as the embeddings are
stochastic, placing similar tasks next to each other reduces the expected loss.
This is advantageous as, in the cases where a drawn embedding is closer to the
mean of a different task than its own, the error of the decoder will be smaller if
the tasks are more similar. Because we calculate the Kullback-Leibler distance
Dk, to a symmetric Gaussian N (0, I), we can assume the distribution over em-
beddings of each task to also be approximately symmetric. We can therefore use
the euclidean distance || - ||2 between task as approximation of their dissimilarity,
as we will do in the next section.

The structure of our VAE is shown in Figure 3.1. It is related to the VAE used
in VariBAD [44], however, while they provide an embedding for every transition
in the trajectory, we only care about one embedding over the full trajectory and
train our VAE accordingly. Additionally, we use skip connections in the decoders
from the sampled embedding to each hidden layer. This has been shown to lead
to more meaningful latent spaces being learned [45]|. Details about the VAE and
hyper-parameters can be found in Appendix A.1.1.
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Figure 3.2: Shown is the embedding learned by our VAE on a 2D-gridworld
task. The numeric labels of the means correspond to the edge length of the
gridworld, we can therefore see that the relation between embeddings corresponds
approximately to the true underlying relations between tasks.

3.3 Curriculum Algorithm

Now that we have an embedding for each task, we want to use these embeddings
to determine a curriculum. While the embedding gives us an estimate of similarity
between tasks, we also need to estimate the learnability of each task, as we want
to start in easy tasks and then progress towards our target task. As an easy
surrogate for learnability, we use the variance of the episodic return received over
multiple trials [(7) = Var[G,(m)]. This is based on the assumption that, in a
task that is solved, the agent will always perform well, and in a task which is too
difficult the agent will always perform poorly. In learnable, intermediate tasks,
however, the agent will sometimes perform well and sometimes fail, leading to
a higher reward variance. Another option that we evaluated is to use epistemic
uncertainty as a proxy for learnability, as was proposed for goal oriented RL by
Zhang et al. [33].

Using the embedding and measure for learnability, we propose two different
ways of determining a curriculum.

3.3.1 Greedy Curriculum

The first approach we propose is a simple greedy curriculum, in which we begin at
the task with the highest learnability and then successively add the closest (most
similar) task till we reach the target task 7*. We first initialize a policy 7 and
generate Ny random trajectories {1y 1, ..., 7> N, } on each task 7 € T, to obtain
training data for our VAE. To determine convergence we perform early stopping
with a separate set of validation trajectories. We then input all trajectories to
the VAE and record the mean z, of the mean parameterization p for each task
T.

1 &
Tr = ~7— eu(Tri),
NT ; H( ,l)
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Algorithm 1: Greedy Automatic Curriculum

Initialize policy 7. Generate Ny random trajectories (T 1, ..., Tr ) on
each €T

Train VAE V with encoder e on all trajectories

for 7 €T do

t Tr = NLT ZzziVT eu(TT,i)
T ¢ arg max, Var[R,]
while target task not solved do
L T < arg minT’ET\T HMT - ,UT’H%
Train 7 on 7 till solved.

Solved target task, terminate.

with e, representing the mean parameterization output by the encoder.

We do not use the output covariance matrix > as we did not find it to be
helpful in practice. We now have an embedding space over tasks, an example is
shown in Figure 3.2 with the means x, being shown on the right.

Our curriculum is supposed to start at the easiest task and then lead to the
target task among similar tasks. We therefore start at the task with the highest
learnability 79 = argmax, [(7) and then greedily choose the closest task that
was not trained on yet 7,11 = argming\ (5, .} [, — 2|2 until we reach the
target task. This could lead to some issues, such as picking tasks that are more
unlike the target task than the previous ones, however, we did not encounter such
issues in our experiments. Having determined our sequence of tasks, we train the
agent on each task until it manages to solves it or exceeds a maximum number
of training steps. We then continue with the next task. This approach is also
shown in Algorithm 1.

3.3.2 Sampling Based Approach

A problem of the approach presented above is that it relies heavily on the dis-
tances in the initial embedding corresponding to similarities between tasks. If
the initial embedding does not achieve this but we keep using it for task selection,
we might even require more interactions with the environment than if we directly
train on the target task. Additionally, not all given tasks might be helpful to
learn the target task. Requiring the curriculum to be a sequence containing all
tasks could, therefore, slow down training. We thus propose an alternative, in
which we probabilistically sample tasks, in order to make the approach more
robust to incorrect or varying embeddings. This is not strictly a curriculum as
in Bengio et al. [25] but serves to achieve the same purpose and is in line with
recent research on curriculum learning, e.g. [34]. Our goal in this approach is
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Algorithm 2: [terative Sampling-Based Curriculum

Initialize policy .
while G+ (mg) < G+ (7*) do
Generate Ny trajectories with (71, ..., 77 ) on each 7 € T with 7y
Train VAE V with encoder e on all trajectories T
for 7€ T do
T = 5= i " en(Tri)
Calculate I(7)

p(7) o< (1 = AN (T, 3)(27) + di(7)

t< 0

while t < T do
T~Dp
Train 7 on 7 for an episode with length L, update 0
t—t+L

Solved target task, terminate.

to sample tasks more frequently that 1) are similar to the target task and 2) are
learnable for our policy in its current state.

To do so, we propose an approach that fits a multivariate Gaussian distribu-
tion N (p, f]) with its mean set to the embedding of the target task u = x.«. We
then determine the covariance matrix 3 as the maximum-likelihood solution given
the embedding means of all tasks {z,|r € T}. This is inspired by ALP-GMM [34],
however, they use their approach to improve generalization and address a setting
in which a task space is given, as the tasks are parameterized by continuous vari-
ables. Instead, we learn a task space with our VAE, allowing an application to
a broader range of tasks. To achieve 2), we combine the probabilities from the
GMM with the normalized learnability score I(7) = Ur)—minre7 U(r) Put

max,c7 [(T)—mine7 ()"

together this result in the following sampling probability:

p(7) x (1 — AN (27, 3) () + di(7) (3.1)

where d is a hyperparameter weighting the learnability and GMM values. We
retrain the embedding and recalculate the probabilities every Ng training steps.
This could therefore be considered an on-policy curriculum and our algorithm
is shown in Algorithm 2. This approach could also be seen as a form of active
learning, in which the agent picks which tasks to train on [46].
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3.4 Experiments

We will first describe the environments used in our experiments, then look at the
learned embeddings and finally at the performance of the curriculum.

3.4.1 Environments

G G G

I I

Figure 3.3: Shown are three tasks from our grid-world task set. The agent
starts in the top-left and is rewarded only for reaching the goal in the bottom-
right corner. While we only show three examples, in our experiments we use 13
different grid-world sizes.

Our first test environment is a two-dimensional grid-world, in which the agent
always starts in the top-left corner and has to move to a target location in the
bottom right corner. No reward is given, except for a reward of » = 10 upon
reaching the goal. We use 13 different variations of this environment, with edge-
lengths in {1,...,13}. This task is illustrated in Figure 3.3.

Bipedal Walker

As a more complex environment, we also look at a continuous control task known
as BipedalWalker from the OpenAl gym suite [47] which has previously been
used in multi-task and generalization literature [34, 35, 48|. In this environment
a simple two-legged robot is placed in a two-dimensional world with the goal
being to move to the right with a high velocity. We here use two different sets
of tasks. The first set of tasks varies the length of the legs and the spacing of
obstacles, but always uses the same default reward function. The second set
of tasks always uses the same robot, but proposes different reward functions
inspired by track and field events: Jumping up, jumping a long distance, running
for three different distances and a hurdle run. Finally, we also add a hurdles task
with sparse rewards, only given when crossing a hurdle and the rewards otherwise
being r = 0. Details about these environments can be found in Appendix B.1.3.
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Figure 3.4: Shown is a scene from the BipedalWalker task with obstacles. The
agent (robot) is rewarded for moving to the right quickly and is punished for
falling over or using too much torque.

3.4.2 Gridworld Results

With regards to the embeddings learned by our VAE, our goal is that they rep-
resent an underlying similarity between tasks in such a way that the euclidean
distance between related tasks is smaller than between unrelated tasks.

3
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Figure 3.5: Shown are the embeddings learned in a randomly chosen trial on the
grid-world set of tasks. On the left the samples generated by the decoder of the
VAE are shown. On the right the mean embeddings Z, are shown for each task.
The numeric labels correspond to the edge-lengths of the grid-worlds.

We first look at the embeddings learned in the grid world task. The embed-
dings from a randomly chosen run are shown in Figure 3.5. The color of each
dot signifies which task generated it. If we just look at the drawn embeddings
from the left plot, it is difficult to see a pattern. However, if we instead look at
the means of the embeddings x, shown in the right plot, we find an expected
pattern. We can see that the embedding has captured the meaning of the under-
lying tasks, at least at a local level, with similar tasks being close to each other,
and dissimilar tasks being far away from each other.

The curriculum generated from this embedding is shown in Figure 3.6. While
the optimal, or oracle, curriculum would go strictly from smaller to larger tasks
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Figure 3.6: Shown is the curriculum determined from the embedding in Fig-
ure 3.5. The colors (blue to red) and arrows show the order of the curriculum.
The optimal curriculum would be in sequence from 1 to 13, here the determined
sequence starts with 3-2-1-4, but is optimal afterwards.

(1,2,...,13), the curriculum generated by our VAE is incorrect for the first two
steps, starting as (3,2,1,4,5,...) and then continuing correctly. This kind of mis-
take is frequent in our experiments. We assume that this is due to the smaller
grid-worlds being more similar to each other than the larger ones and therefore
being clustered more closely together.

o LU 1.0

% 3.5 I1Oracle -

% 3.0 1 "1 Learned - % 0.8 i

= 2.5 I1Random -~ 0.6 -

2 2.0 : -7

o2 I1 Direct Q
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Figure 3.7: Shown are the average number of steps required to solve the target
task, as well as percentage of successful trials, averaged across 20 trials each. The
error bars show the standard deviation of the mean. We can see that the learned
curriculum performs similar to the optimal oracle curriculum while the random
curriculum rarely succeeds at the task. The direct approach, only training on the
target tasks, requires significantly more steps to converge.

Next, we will compare our learned, greedy curriculum approach with three
baselines: Oracle which has knowledge of the optimal curriculum (1,2,...,13),
Random which randomly picks a new task that has not been trained on yet,
and Direct which only trains on the target task. We perform 20 trials with each
approach and report the number of steps necessary to solve the target task, as
well as the portion of trials in which the approach managed to solve the target
task, in the maximum 10 million time-steps. The results are shown in Figure 3.7.
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They show that the curriculum learned by our approach performs similarly to the
optimal oracle curriculum while the random curriculum rarely solves the target
task in the allotted number of steps. Directly training on the target task achieves
a similar success rate to using the oracle curriculum, but requires about six times
as many environment steps. The VAE was trained with 1.5 x 10* steps per task,
for a total of ~ 2 x 10° environment steps. These are not accounted for in the
bar chart as our aim here is to evaluate the efficacy of the learned curriculum.
Adding them, however, does not significantly affect the comparison and the used
number of training steps for the VAE could probably be reduced further.

3.4.3 Bipedal Walker Results

Having shown the effectiveness of our approach on a simple grid-world task, we
will now evaluate our approach on the more complex Bipedal Walker task.

—0.15 1=45,0=2 |=350=2 1=35,0=(
><p=0.06 p=0.11 p=0.02
~0-161 1=450=4 1=350=4
p=0.14 =0.14
—0.17 1 = =
L=4§'13X° 1=25,0=0
p=0.31
—0.18
—0.19 1=25,0=4
p=0.05
g
—0.20 =0.04

—0.110 -0.105 —-0.100 —0.095 —0.090 —0.085 —0.080

Figure 3.8: Shown is the embedding learned for the BipedalWalker leg length,
obstacle spacing taskset. [ is the lenght of the legs of the robot, and o is the
spacing of the obstacles, with o = 0 meaning no obstacles were used. Here we
use the sampling based curriculum with p denoting the probability of sampling
each task. We can see that tasks closer to the target task (I = 25,0 = 0) are
more likely to be selected.

We begin by looking at the embedding learned by the VAE in the first task
set, consisting of different leg lengths and obstacle spacings. The embedding from
a randomly chosen trial is shown in Figure 3.8. While we can see a separation
into the different leg lengths, it is not as clear as in the grid-world tasks.

As we do not expect a sequence of tasks to be helpful, we here use the
sampling-based approach shown in Algorithm 2. The task probabilities in our
example trial are also shown in Figure 3.8. The results from our approach and
baselines are shown in Figure 3.9. Unfortunately, we found that in this set of
tasks no tested curriculum, learned or hand-crafted, lead to an improvement over
randomly picking tasks. This can be explained by the agent being able to infer
the spacing of obstacles and its leg length from the LIDAR measurements it re-
ceives. This leads to the agent being able to learn a good policy for the target
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Figure 3.9: Shown is the reward on the target task for our leg length and obstacle
dataset. We perform 10 trials per approach and the shaded region shows the 95%
CI on the mean. We do not find any curricula to be helpful in this set of tasks.

task, by training on a different task, making the actual task choice less important.
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Figure 3.10: Shown are the embeddings for our track and field set of tasks, using
random policies (left), intermediate policies (middle) and close to optimal policies
(right).

We therefore continue with the second task set, in which we assume that a
curriculum starting with running, then hurdles and finally the sparse hurdle task,
should be advantageous. The embedding learned in this set of tasks is shown
in Figure 3.10 on the left side. We can see that here our approach struggles
to separate the tasks meaningfully and the embedding seems mostly random.
This might be due to the reward not being very informative when using random
policies. To investigate whether the random trajectories are the issue, we also
train embeddings for agents achieving medium or high rewards on these tasks,
shown in the middle and right of Figure 3.10. Looking at the intermediate and
expert policies, we see a meaningful clustering with the running tasks being
separate from the jump and hurdles tasks. Further, the two hurdles tasks are
clustered together.

The results from our approach are shown in Figure 3.11. We also show the
results of the proposed oracle curriculum, uniformly random task sampling and
naively training on the target task without using any other tasks. The oracle
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Figure 3.11: Shown are the results from different curriculum methods on the
track and field task set. We perform 10 trials per approach and the shaded
region shows the 95% CI on the mean. The target task here is the sparse hurdles
task.

curriculum converges significantly quicker than all other approaches, while our
learned approach and the baselines perform similar. This failure is due to the
difficulty of identifying a useful embedding from random trajectories. As we
expect the performance of the agent to approach that of intermediate agents
with some training, we attempted a variant of our curriculum training in which
we retrain the embedding after every N training episodes. Unfortunately, the
initially random curriculum prevents our approach from reaching a performance
similar to that of the trained agents shown in Figure 3.10. It therefore performed
identical to our approach using only the initially determined embedding.

While there are other improvements that could be pursued from this point,
such as different sampling approaches, different ways of determining the embed-
ding, and different structures for the agent, we here decided to move on to a
different topic. Specifically, the cluster-like structure and failure to learn a useful
policy in the presence of conflicting reward functions, as present in the track and
field task, motivated us to look into Multi-Task learning with clusters of similar
tasks. We investigate this setting in the next chapter. For the curious reader,
we list some attempted but ultimately unsuccessful changes to our curriculum
approach in the Appendix A.2.



CHAPTER 4

Expectation-Maximization Task
Clustering
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Figure 4.1: An agent (smiley) should reach one of 12 goals (stars) in a grid world.
Learning to reach a goal in the top right corner helps him to learn to reach the
other goals in the same corner. However, learning to reach a goal in a different
corner at the same time leads to conflicting rewards, hindering training. Task
clustering resolves the issue.

While in the last chapter our goal was to perform well on a single task, in
this chapter we address the problem of multi-task learning in which we are given
a set of tasks and wish to perform well on all of them. There are already many
approaches that address this issue, as we will explain in more detail in the next
section, but they all have one common feature: They all —implicitly or explicitly —
assume that the tasks are uniformly similar to each other. However, if we regard
more complex, more varied sets of tasks, this does seem like an inappropriate
assumption in general. For example, if we look at the tasks in the track and
field discipline, as illustrated in Chapter 1, we can clearly see that some tasks
are more similar than others. Assuming that these tasks are all equally similar
would be inaccurate and can slow down training. Negative transfer between
tasks with contradicting rewards might even prevent convergence, as shown in
the BipedalWalker experiments in Section 3.4.3. However, learning a full task
space, for example with our VAE, is difficult in some settings.

21



4. EXPECTATION-MAXIMIZATION TASK CLUSTERING 22

Therefore, we aim to find a less strict representation of task similarity. In-
stead of wanting distances between tasks to correspond to similarity, we only
aim to identify subsets of similar tasks that can be learned together. By doing
so, we rephrase this issue as a clustering problem, in which we want to train a
policy for each cluster. To solve this problem we propose an approach inspired
by the expectation-maximization framework. We begin by initializing a set of
policies corresponding to the presumed number of clusters. We then iteratively
evaluate this set of policies on all tasks, assign tasks to policies based on their
respective performance and train policies on their assigned tasks. This leads to
policies naturally specializing to clusters of related tasks, yielding an interpretable
decomposition of the full task set. Further, our approach naturally avoids neg-
ative transfer and can thereby improve the learning speed and final reward in
multi-task RL settings.

4.1 Related Work

Here we will provide an overview over related work, split into three sections: EM
in RL, task clustering and general multi-task RL.

4.1.1 Expectation Maximization in Reinforcement Learning

Expectation-Maximization (EM) has previously been used in RL to directly learn
a policy. By reformulating RL as an inference problem with a latent variable, it
is possible to use EM to find the maximum likelihood solution, corresponding to
the optimal policy. We direct the reader to Deisenroth et al. [49] for a survey on
the topic. Our approach is different: We use an EM-inspired approach to cluster
tasks in a multi-task setting and rely on recent RL algorithms to learn the tasks.

4.1.2 Task Clustering

In supervised learning, the idea of subdividing tasks into related clusters was first
proposed by Thrun et al. [50]. They use a distance metric based on generalization
accuracy to cluster tasks. A variety of other methods have been proposed in the
supervised learning literature, for brevity we direct the reader to the survey by
Zang et al.[10], which provides a good overview of the topic. Our work differs in
that we focus on RL, where no labeled data set exists.

In RL, task clustering has in the past received attention in works on transfer
learning. Carroll and Seppi [51] proposed to cluster tasks based on a distance
function. They propose distances based on @-values, reward functions, optimal
policies or transfer performance. They propose to use the clustering to guide
transfer. Similarly, Mahmud et al. [52] propose a method for clustering Markov
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Decision Processes (MDPs) for source task selection. They design a cost function
for their chosen transfer method and derive an algorithm to find a clustering that
minimizes this cost function. Our approach differs from both in that we do not
assume knowledge of the underlying MDPs and corresponding optimal policies.
Furthermore, the general nature of our approach allows it to scale to complex
tasks, where comparing properties of the full underlying MDPs is not feasible.
We also do not use the clustering for source selection, but instead use it during
training to improve learning speed in a multi-task setup.

4.1.3 Multi-Task Reinforcement Learning

Related research on multi-task RL can be split into two categories: works that
focus on very similar tasks with small differences in dynamics and reward, and
works that focus on very dissimilar tasks. In the first setting, approaches have
been proposed that condition the policy on task characteristics identified during
execution. Lee et al. [53] use model-based RL and a learned embedding over
the local dynamics as additional input to their model. Yang et al. [54] train two
policies, one that behaves in a way that allows an identification of the environ-
ment dynamics and another policy that uses an embedding over the transitions
generated by the first as additional input. Zhang et al. [55] treat multi-task RL
as a hidden-parameter-MDP and learn a model over the dynamics using Bisimu-
lation to provide performance guarantees. They evaluate on MuJoCo tasks with
varying masses, friction, foot length or finger size. Zintgraf et al. [44] train an
embedding over the dynamics that accounts for uncertainty over the current task
during execution and condition their policy on it.

Our approach is more general than these methods as our assumption on task
similarity is weaker. Another set of works focuses on a setting in which just the
reward changes. This is also referred to multi-goal RL. For example, some papers
use successor features to get a way to easily do policy evaluation [56]. Hansen
et al. [57] combine this with variational inference to be able to scale to complex
Atari games. Zhang et al. [33] use value disagreement to select which goals to
sample for training their policy. Our approach is more general than these works,
as it allows for both differing dynamics and rewards.

In the second group of papers, the set of tasks is more diverse. Most ap-
proaches here are searching for a way to reuse representations from one task in
the others. Riemer et al. [58| present an approach to learn hierarchical options,
and use it to train an agent on 21 Atari tasks. They use the common NatureDQN
network [14] with separate final layers for option selection policies, as well as sep-
arate output layers for each task to account for the different action spaces. They
investigate the option frequencies per task and find some similarities between
games. Eramo et al. [59] show how a shared representation can speed up train-
ing. They then use a network strucuture with separate heads for each task but
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share the hidden layers. They evaluate their approach on MuJoCo tasks [60]
and show an advantage compared to using randomly initialized policies. Our
multi-head baseline is based on these works. Bram et al. [61] propose a method
that addresses negative transfer between multiple tasks by learning an attention
mechanism over multiple sub-networks. However, as all tasks yield experience for
one overarching network, their approach still suffers from interference between
tasks. We limit this interference by completely separating policies. They focus
on simple discrete tasks and do not assume a setting with clusters of similar
tasks. Wang et al. [48] address the problem of open-ended learning in RL by
iteratively generating new environments. Similar to us, they use policy rankings
as a measure of difference between tasks. However, they use this ranking as a
measure of novelty to find new tasks, addressing a very different problem. Hes-
sel et al. [62] present PopArt for multi-task deep RL. They address the issue
that different tasks may have significantly different reward scales. Sharma et
al. [46] look into active learning for multi-task RL on Atari tasks. They show
that uniformly sampling new tasks is suboptimal and propose different sampling
techniques. Yu et al. [63] propose Gradient Surgery, a way of projecting the
gradients from different tasks to avoid interference. These last three approaches
also address learning games in Atari, but they are orthogonal to our work and
could be combined with EM-clustering. We see this as an interesting direction
for future work.

4.2 Approach

As the growing body of literature on meta-, transfer- and multi-task learning
suggests, we can expect a gain through positive transfer if we train a single policy
m; on a set of related tasks T C 7. On the flip side, the policy m; might perform
poorly on tasks 7 ¢ Ti. Moreover, training policy m; on a task 7 ¢ T might even
lead to a decrease in performance on the task set Ti through negative transfer.
We incorporate these insights into our algorithm by modeling the task set 7 as
a union of K disjoint task clusters Tq,..., g, i.e., T = Uszl T with T,NT; =0
for ¢ # j. Tasks within a cluster allow for positive transfer while the relationship
of tasks of different clusters is unconstrained. Tasks in different clusters can
therefore even have conflicting objectives. Note that the assignment of tasks to
clusters is not given to us and therefore needs to be inferred by the algorithm.
Note also that this formulation only relies on minimalistic assumptions. It is
therefore applicable to a much broader range of settings than many sophisticated
models with stronger assumptions. As generality is one of our main objectives,
we see the minimalistic nature of the model as a strength rather than a weakness.

Given this problem formulation we note that it reflects a clustering problem,
in which we have to assign each task 7 € T to one of the clusters Ty, k €
{1,...,K}. At the same time, we want to train a set of policies {71, ..., 7} to
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solve the given tasks. Put differently, we wish to infer a hidden latent variable
(cluster assignment of the tasks) while optimizing our model parameters (set of
policies). An Expectation-Maximization (EM) [12] inspired algorithm allows us
to do exactly that. On a high level, in the expectation step (E-step) we assign
each of the tasks 7 € T to a policy m; representing cluster 7;. We then train
the policies in the maximization step (M-step) on the tasks they got assigned,
specializing the policies to their clusters. These steps are alternatingly repeated
— one benefiting from the improvement of the other in the preceding step —
until convergence.

Algorithm 3: EM-Task-Clustering
Initialize n policies {71, ..., T}
while not converged do

> E-Step

Ti< 0 forie{l,...,n}

for 7€ T do
L k < arg max; G, (m;)

T < T UT

T; < T where 7; =0

> M-Step

for m; € {my,...,m,} do

t+ 0

while ¢t < T do

T~T;
Train 7; on 7 for an episode of L steps
t<—t+ L

Given this general framework we are left with determining the details. Specif-
ically, how to assign tasks to which policies (E-step) and how to allocate training
time from policies to assigned tasks (M-step).

For the assignment in the E-step we want the resulting clusters to represent
clusters with positive transfer. Given that policy m; is trained on a set of tasks 7;
in a preceding M-step, we can base our assignment of tasks to m; on the perfor-
mance of m;: Tasks on which 7; performs well likely benefited from the preceding
training and therefore should be assigned to the cluster of ;. Specifically, we
can evaluate each policy m; € {m1,...,m,} on all tasks 7 € T to get an estimate
of G, (m;) and base the assignment on this performance evaluation. To get to an
implementable algorithm we state two additional desiderata for our assignment:
(1) We do not want to constrain cluster sizes in any way as clusters can be of
unknown, non-uniform sizes. (2) We do not want to constrain the diversity of
the tasks. This implies that the assignment has to be independent of the reward
scales of the tasks, which in turn limits us to assignments based on the relative
performances of the policies 71, ..., 7,. We found a greedy assignment — assign-
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ing each task to the policy that performs best — to work well. A soft assignment
based on the full ranking of policies might be worth exploring in future work.

In the M-step, we take advantage of the fact that clusters reflect positive
transfer, i.e., training on some of the assigned tasks should improve performance
on the whole cluster. We can therefore randomly sample a task from the assigned
tasks and train on it for one episode before sampling the next task. Overall we
train each policy for a fixed number of updates Th; in each M-step with T,
independent of the cluster size. This independence allows us to save environment
interactions as larger clusters benefit from positive transfer and do not need
training time proportional to the number of assigned tasks.

Note that the greedy assignment (and more generally any assignment fulfilling
desiderata 1 above) comes with a caveat: Some policies might not be assigned
any tasks. In this case we sample the tasks to train these policies from all tasks
7 € T, which can be seen as a random exploration of possible task clusters. This
also ensures that, early on in training, every policy gets a similar amount of initial
experience. For reference, we provide a simplified pseudo code of our approach
in Algorithm 3. Note that our approach is independent of the RL algorithm
used to train the policies in the M-step and can therefore be combined with any
state-of-the-art RL algorithm.

4.3 Experiments

As a proof of concept we start the evaluation of our approach on two discrete
tasks. The first environment consists of a chain of discrete states in which the
agent can either move to the left or to the right. The goal of the agent is placed
either on the left end or the right end of the chain. This gives rise to two
task clusters, where tasks within a cluster differ in the frequency with which
the agent is rewarded on its way to the goal. The second environment reflects
the 2-dimensional grid-world presented in Figure 4.1. Actions correspond to the
cardinal directions in which the agent can move and the 12 tasks in the task
set T are defined by their respective goal. We refer an interested reader to
Appendix B.1.1 for a detailed description of the environments.

We train policies with tabular Q-learning [13] and compare our approach to
two baselines: In the first we train a single policy on all tasks. We refer to this
as SP (Single Policy). In the other we train a separate policy per task. This
is referred to as PPT (Policy per Task). Our approach is referred to as EM
(Expectation-Maximization).

The learning curves as well as the task assignment over the course of training
are shown in Figure 4.2 and Figure 4.3. Looking at the assignments, we see that
in both environments our approach converges to the natural clustering, leading
to a higher reward after finding these assignments. Both our EM-approach and
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Figure 4.2: Left: Mean reward and 95% confidence interval (shaded area) from
10 trials when training on the chain environment. Right: Task assignment
(dots) and task specific reward (color) over the course of training the two policies
in our approach. Each plot shows one of the policies/estimated clusters. The
assignments converge to the natural clustering reflected by the goal location.

PPT converge to an optimal reward in the chain environment, and a close to
optimal reward in the corner-grid-world. However, PPT requires a significantly
higher amount of environment steps to reach this performance, as it does not
share information between tasks and therefore has to do exploration for each
task separately. SP fails to achieve a high reward due to the different tasks
providing contradicting objectives.

4.3.1 Pendulum

Next we consider a simple continuous control environment where tasks differ in
their dynamics. We use the pendulum gym task [47], in which a torque has to
be applied to a pendulum to keep it upright. Here the environment is the same
in all tasks, except for the length of the pendulum which is varied in the range
{0.7,0.8, ..., 1.3}, giving a total of 7 tasks.

To train our agent, we use TD3 [20] with hyperparameters optimized as dis-
cussed in Appendix B.1.2. We compare against SP, PPT, a multi-head network
structure similar to the approach used by Eramo et al. [59], and a multi-output
network structure as common in related work [62]. Each policy in our approach
uses a separate replay buffer. The multi-head network has a separate replay-
buffer and a separate input and output layer per task, referred to as Multi-Head.
The multi-output network also has a separate replay buffer and output layer per
task, but uses the same input layer. We refer to it as Multi-Out. We assume that
Multi-Head should perform better in settings with more diverse tasks, as it has a
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Figure 4.3: Left: Mean reward and 95% confidence interval (shaded area) from
10 trials when training on the grid-world environment depicted in Figure 4.1.
Right: Task assignment (dots) and task specific reward (color) over the course
of training for the n = 4 policies (estimated clusters) in our approach. The
assignment naturally clusters the tasks of each corner together.

more task specific structure. Accordingly, we assume that Multi-Out will perform
better if all tasks are very similar to each other. We adjust the network size of
the Multi-Head and Multi-Out baselines to avoid an advantage of our method
due to a higher parameter count, see Appendix B.1.2 for details.

The results are shown in Figure 4.4. We again observe that our approach
clusters similar tasks together, leading to a better performance than the SP agent
and a faster convergence than PPT. Multi-Out initially performs worse than EM
n = 2, and has a similar final performance to EM n = 4. However, it performs
slightly better than our approach during an intermediate period. Multi-Head
requires more experience to converge than our approach in this setup, even more
than the PPT approach. We believe this is due to the inherent interference of
learning signals in the shared layers. The cluster assignment in our approach is
also intuitive, with two clusters focusing on the extremes (cf. Figure 4.4).

4.3.2 Bipedal Walker

As a more complex continuous control environment we again use the Bipedal-
Walker from the OpenAl Gym [47]. It consists of a bipedal robot in a two-
dimensional world, where the default task is to move to the right with a high
velocity. The action space consists of continuous torques for the hip and knee
joints of the legs and the state space consists of joint angles and velocities, as
well as hull angle and velocity and 10 lidar distance measurements.

To test our approach, we reuse the tasks from Section 3.4.1, consisting of 6
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Figure 4.4: Left: Mean reward and 95% confidence interval (shaded area) from
10 trials when training on the pendulum environment. The curves are smoothed
by a rolling average to dampen the noise of the random starting positions. Right:
Task assignment (dots) and task specific reward (color) from a sample run. Two
policies focus on long and short, while the others focus on medium lengths.

tasks inspired by track and field sports: Jumping up at the starting position,
jumping forward as far as possible, a short, medium and long run and a hurdle
run. We also reuse the second set of tasks, consisting of 9 tasks with varied leg
length as well as spacing of obstacles. This task set is inspired by task sets in
previous work [34]. Note that we keep the objective — move forward as fast as
possible — constant here. We again use TD3 and tune the hyperparameters of
the Multi-Head baseline and our approach (with n = 4 fixed) with grid-search.
Experiment details and hyperparameters are given in Appendix B.1.3.

The results in Figure 4.5 (left) on the track and field tasks show a significant
advantage in using our approach over Multi-Head or SP and a slightly better
initial performance than PPT, with similar final performance. SP fails to learn
a successful policy altogether due to the conflicting reward functions. Multi-Out
performs comparably to our approach. In contrast, the results in Figure 4.5
(right) from the second task set show that SP can learn a policy that is close to
optimal on all tasks here. Multi-Head and PPT approaches suffer in this setup
as each head/policy only gets the experience from its task and therefore needs
more time to converge. Our approach can take advantage of the similarity of the
tasks. Multi-out performs slightly worse than our approach during the majority of
training, and achieves a lower final performance. We note that the experiments
presented here reflect two distinct cases: One in which it is advantageous to
separate learning, reflected by PPT outperforming SP, and one where it is better
to share experience between tasks, reflected by SP outperforming PPT. Our
approach demonstrates general applicability as it performs competitively in both.
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Figure 4.5: Evaluation of the BipedalWalker experiments. The shaded areas
show the 95% confidence interval on the mean task reward. Left: Track and
field task set; 6 tasks with varying objectives. Results reflect 20 trials of each
approach. Right: Task set with varying leg lengths and obstacles; 9 tasks with
the same reward function. Results reflect 10 trials of each approach.

We provide an insight into the assignment of tasks to policies in Appendix B.2.1.

4.3.3 Atari

To test the performance of our approach on a more diverse set of tasks, we eval-
uate on a subset of the Arcade Learning Environment (ALE) tasks [64]. Our
choice of tasks is similar to those used by [58], but we exclude tasks containing
significant partial-observability. This is done to reduce the computational bur-
den as those tasks usually require significantly more training data. We built our
approach on top of the IQN implementation in the Dopamine framework [16, 65].
We chose IQN due to its sample efficiency and the availability of an easily modi-
fiable implementation. As the different ALE games have different discrete action
spaces, we use a separate final layer and a separate replay buffer for each game
in all approaches. We use the hyperparameters recommended by [65], except for
a smaller replay buffer size to reduce memory requirements. We evaluate our
approach with the number of policies set to n = 4 and n = 8. We choose the size
of the network such that each approach has the same number of total tunable
parameters. We provide the details in Appendix B.1.4.

The results, in form of the median human-normalized rewards, are given in
Figure 4.6. Our EM approach performs similar to PPT and does not show a
large difference between using n = 4 and n = 8. We note also that the Multi-
Head approach is unable to learn any useful policy here due to negative transfer
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Figure 4.6: Shown are the results of our experiments on a subset of the Atari
Learning Environment games. The median reward across games is calculated
for each trial, then the mean of this value is taken across 3 trials. The shaded
region shows the standard deviation of this mean. On the right we show the
mean reward per task.

between tasks. This is in line with experiments in other research [62]. Our
approach manages to overcome most of this negative interference, even with just
4 clusters. However, while it is able to avoid negative transfer, we do not see a
large benefit from sharing experience between tasks, except in the very beginning
of the training. We also note that our approach performs similar to PPT in most
games. A notable exception is JamesBond, where PPT significantly outperforms
our approach. Task assignments in our approach are given in Appendix B.2.2, as
well as an additional discussion of the mean human-normalized reward.

4.3.4 Ablations

To gain additional insights into our approach, we perform three ablation studies
on the discrete corner-grid-world environment and the pendulum environment.

First, we investigate the performance of our approach for different numbers
of policies n. The results in Figure 4.7 show that using too few policies can
lead to a worse performance, as the clusters cannot distinguish the contradicting
objectives. On the other hand, using more policies than necessary increases the
number of environment interactions required to achieve a good performance in
the pendulum task, but does not significantly affect the final performance.

As a second ablation, we are interested in the effectiveness of the clustering. It
might be possible that simply having fewer tasks per policy is giving our approach
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policies at the start of training. Shaded areas show the 95% confidence interval
of the mean reward. Left: Corner-grid-world tasks, 10 trials each. Right:
Pendulum tasks, 10 trials each, learning curves smoothed.

an advantage compared to SP or Multi-Head. We therefore provide an ablation
in which task-policy assignments are determined randomly at the start and kept
constant during the training. Results from this experiment can be seen in Figure
4.8. The results show that using random clusters performs significantly worse
than using the learned clusters. This highlights the importance of clustering
tasks meaningfully.

In our EM-approach we use a separate replay buffer for each policy, while
in the Multi-Out and Multi-Head baselines we use a separate replay buffer for
each task. The baselines might therefore have an advantage, as in our approach
the assignments frequently switch during the earlier iterations. This leads to
transitions being added to the replay buffers that do not match the tasks the
policy is assigned to later on. These transitions transitions are then not used
to train a policy that might later be assigned to this task, slowing training an
hindering specialization.
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comparison.

We therefore investigate an ablation of our approach, in which we use a re-
play buffer per task instead of per policy. We investigate this on our Pendulum
environment with n = 2 and n = 4 policies and show the results in Figure 4.9.
This experiment shows a clear advantage of using a replay buffer per task instead
of per policy. The difference is significantly larger for n = 4 than it is for n = 2.
This can be explained by the transitions being split between four policies instead
of two, therefore more transitions being "wasted". For comparison we also show
the performance of the Multi-Out baseline in gray. While our EM approaches
with buffers per policy perform similar to this baseline, n = 4 with a policy per

task performs significantly better.



CHAPTER 5

Conclusion

In this work, we have proposed two ways of identifying and using relations be-
tween tasks in Reinforcement Learning (RL). In the first approach, we use a
variational autoencoder to learn an embedding over tasks in which distances cor-
respond to similarities. We then use this embedding in the setting of Curriculum
Learning to identify a sequence of tasks that lets us quickly learn a given target
task. We combine the embeddings with a heuristic for task learnability and use
these measures to automatically determine the curriculum. While we show that
this approach works well in simple discrete tasks, it fails to perform well in more
complex environments.

In the second setting, we look at Multi-Task RL in which the goal is to train
an agent that performs well on all tasks. We present an approach inspired by
expectation-maximization that automatically clusters tasks into related subsets,
avoiding negative transfer. Our approach uses a set of policies and alternatingly
evaluates the policies on all tasks, assigns each task to the best policy, and trains
policies on their assigned tasks. Since our approach can be combined with any
underlying RL method, we evaluate it on a diverse set of environments. We show
its performance on sets of simple discrete tasks, simple continuous tasks, two
complex continuous control task sets and a set of Atari games. We show that
our approach is able to identify clusters of related tasks and use this structure to
achieve a competitive or superior performance in all experiments when compared
to other methods. We further performed additional ablations in order to provide
insights into how our approach works.

As future work, we plan to investigate different assignment strategies in our
clustering approach.
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APPENDIX A

Appendix Curriculum Learning

In addition to the details provided here, the implementation of all experiments
is available online, but will not be linked here for now due to the anonymity
requirements of a submission.

A.1 Experiment Details

A.1.1 Grid World Curriculum Experiment

In our first experiment, we use a 2D-grid-world with an edge-length in {1, 2, ..., 13}.
The agent always starts in the top-left corner and the goal position is in the
bottom-right corner. The observation of the agent consist of its current position,
the possible actions are the cardinal directions. A reward of r = 10 is given upon
reaching the target position, otherwise » = 0. The decay factor v = 0.9 is used.

To train the agents we use tabular Q-learning with e-greedy exploration. We
begin with ¢y = 0.2 and decay this value with ¢, = egz, with v, =1 -1 x 107,
Here t corresponds to the number of time-steps in a single task and is therefore
reset whenever a new task in the curriculum is started. This is necessary to allow
exploration in the new tasks.

Embedding Details

As encoder for the Variational Autoencoder (VAE) we use a structure based on
the structure used by Zintgraf et al. [44]. The encoder receives state s, action
a, reward r and next state s’. The states s, s’ are input into a fully-connected
layer with 32 ReLU units, the actions a and reward r are input into two separate
fully-connected layer with 16 ReLLU units. The outputs from these layers are
then concatenated and used as input for a fully-connected layer with 64 units,
followed by a gated recurrent unit (GRU) [66] layer with 64 units. All transitions
(s,a,r,s') from a trajectory are used as input to the encoder, only the final
output of the GRU is used as output. It is then input into two fully connected
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layers with nas units corresponding to the dimensionality of the embedding. The
outputs are used to parameterize the mean and diagonal covariance matrix of
the multivariate normal distribution in the VAE. A sample m is then drawn
from this distribution and used to represent the current task in the decoder. As
the decoders are meant to represent the reward and transition function, we use
two separate decoders and all transitions as input. Therefore, the reward decoder
receives (s,a,s’;m) as input and should output r. Similarly, the transition decoder
receives (s,a,r,m) as input and should output s’. Both have two fully connected
layers with 64 and 32 tanh units respectively, followed by a linear output layer
with dimension corresponding to the state shape or a single scalar for the reward.
We then average the mean-squared errors per trajectory, to avoid focusing on long
trajectories only, and sum up the losses.

Liotal = 5DKL(Q(2|$)||]?(Z)) + L+ Ly
T=Nr t=L

o i l ~/ / lt:L 5 2
=80kt 30 (7 25— sl 2= li)

T=1

(A1)

with N7 being the number of trajectories, L being length of each episode (might
vary) and § and 7 being the outputs of the decoders.

We use the squared euclidean norm || - ||3 which formally corresponds to
assuming a symmetric normal distributions over transitions and rewards. As we
use the re-parameterization [22| trick to represent the normal distribution, we can
propagate the gradient of this loss to the encoders, and train the whole model by
gradient descent. All hyper-parameters are shown in Table A.1.

Table A.1: Hyperparamters for Curriculum Grid-World Experiments.

Hyperparameter Value
learning-rate « 0.5

random action prob. e 0.1

eps-decay 7. 1-1x107°
reward decay ~y 0.9

VAE training epochs 20

VAE regularization § 103

VAE learning rate 1x1074

VAE batch size 100 trajectories

Trajectory subsampling —
VAE Training steps per task 1.5 x 104
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A.1.2 BipedalWalker

Most details about the tasks can be found in Section B.1.3, as the tasks are
almost the same. However, in the track and field task set we also use a sparse
version of the hurdles task, in which a reward » = 10 is only given when a
hurdle is crossed, and otherwise only the torque regularization reward is used.
We terminate episodes after 2000 steps or when the agent reaches the target or
falls over.

We train the VAE with the hyperparameters shown in Table A.2. As the
trajectories here are a lot longer than in the grid-world. Here we use the sampling-
based curriculum shown in Algorithm 2. All policies are trained using Twin
Delayed Deep Deterministic Policy Gradient (TD3). We did not perform a hyper-
parameter search in this task, as we assume that the parameters should affect all
approaches similarly.

Table A.2: Hyperparamters for Curriculum BipedalWalker Experiments.

Hyperparameter Value
batch-size 1000
update-rate )
policy-update-frequency 3
network size (400, 300)
exploration noise o 0.1
exploration noise clipping [—0.5,0.5]
target policy smoothing noise ¢ 0.2
buffer-size 5 x 106
decay ~ 0.99

VAE training epochs 200

VAE regularization § 103

VAE learning rate 1x107*
VAE batch size 100 trajectories
Trajectory subsampling 50

VAE Training steps per task 1.5 x 10°

A.2 Failed Attempts in the BipedalWalker Taks

In the first task-set for the BipedalWalker, in which we vary leg-length and ob-
stacle spacing, we found curricula to be unnecessary, as this task can be learned
directly quite quickly, and therefore did not continue working on these tasks.
In the second set of tasks, inspired by track and field events, we found an or-
acle curriculum to be helpful. However, both of our two proposed approaches,
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the greedy and sampling-based curricula, did not manage to identify a similarly
good curriculum. They therefore performed similar to a random curriculum. To
avoid this, we attempted several changes to our curriculum approach. Ultimately
none of them proved successful. We therefore briefly list them here and give some
insight into why they were attempted and why they failed or were not pursued
further.

The main problem in the BipedalWalker experiments, as stated above, is
that embeddings generated by trajectories of a random policy do not capture the
structure of the underlying tasks. Therefore any curriculum generated from these
embeddings is similar to a random curriculum. An easy way to avoid this issue
is to learn an embedding with previously trained policies. While we show that
doing so results in a meaningful embedding, as shown in Figure 3.10, we do not
pursue this further as it contradicts our motivation of quickly learning a single
policy.

Sometimes a policy trained with randomly sampled tasks converges suffi-
ciently to generate a meaningful embedding. We then have to decide which tasks
to sample. Simply basing it on distance to the target task does not work, as
it will result in mainly training directly on the target task. If training on the
target task directly is feasible, this will work, but in this case using a curriculum
is ill-advised from the beginning. In most settings, such as in ours, we therefore
want to train on related but easier tasks. We therefore add a learnability function
[:T — RT. We first tried using the variance of the return over different trials of
the same task, as was successful in the grid-world experiments. However, this was
not successful, as the variance of the reward is similar on all tasks, and estimating
it reliably requires a large number of roll-outs, which contradicts the objective
of quickly learning a good performance on the target task. We therefore, mo-
tivated by Zhang et al. [33|, attempted to use epistemic uncertainty about the
value as a proxy for learnability. We therefore trained 3 @-functions separately
from the one used to train our agent and calculate the epistemic uncertainty as
lo=1 Zizll 3 ,’:zi’(Qk(st, at) — Q(s¢,a))?). While this reduces the number of
required roll-outs, it has the different issue of value disagreement being high on
each task, that the agent has not trained on.

We also tried variants on the VAE, such as not using the reward in the input
or output of the VAE, keeping a persistent VAE model and just fine-tuning it
every IN episodes, using the latent state of the GRUs instead of their output, and
many other structural changes.
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Appendix Task Clustering

B.1 Experiment Details

B.1.1 Discrete Multi-Task Experiments

In the first discrete task set we use a one-dimensional state-chain with 51 states,
in which the agent starts in the middle and receives a reward for moving toward
either the left or right end. As a reward we use r = [ where x,4 is the
position of the agent and g4, is the goal position (either the left or right end of
the chain). We give a reward of r = 20 if the goal position is reached. Depending
on the task, the reward is given every 2, 4, 8 or 16 steps, or only at the goal

position, and otherwise replaced by r = 0.

For our corner grid-world task set we use a 2D-grid-world with edge length 7
and three goal positions per corner (as depicted in Figure 4.1). The agent always
starts in the center and receives a reward based on the distance to the target

r= m, with || - ||2 being the Euclidean norm. A reward of r = 10 is
ag —Lgoal |2

given when the agent reaches the goal position.

In both tasks we use tabular Q-Learning with e-greedy exploration. We start
with ¢y = 0.2 and decay the value as ¢; = egé with 7. =1—-1Xx 1075, We use a
learning rate of a = 0.2 to update the value estimates, as from the perspective of
a single agent the environment can be regarded as stochastic. Further, we use a
discount factor of v = 0.9 and Th; = 500 training steps per policy in each M-step
and evaluate each policy on each task for three episodes during the E-step, using
the greedy policy without exploration.

B.1.2 Pendulum

In our pendulum tasks we use a modified version of the Pendulum environment
provided in OpenAl gym [47]. This environment consists of a single pendulum
and the goal is to balance it in an upright position. The observation consists
of the current angle 6, measured from the upright position, and current angular
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velocity represented as (sin @, cos 9,9). The reward for each time step is r; =
—(0% + 0.16% + 0.001a?), with a being the torque used as action. Every episode
starts with a random position and velocity. To provide a set of tasks we vary the
length of the pendulum in {0.7,0.8,...,1.3}.

Network Structures

As we have three different network structures, we provide illustrations of each
in Figure B.1. We use completely separate networks for the actor and two critic
functions, however, they all share the same network structure, except for the
differing input and output values. We therefore use  and y to represent inputs
and outputs respectively in the diagrams. In the case of the actor, = := s,y := a,
while in the case of the critic z := (s,a),y := Q(s, a).

Hyperparameters

Hyperparameters for our EM-TD3 and multi-head TD3 were tuned on the pen-
dulum task set by grid search over learning rate @ = {1x1072,3x1073,1x 1073},
batch-size b = {64,128} and update-rate u = {1, 3,5}, specifying the number of
collected time-steps after which the value-function is updated. We increased the
network size for multi-head TD3, so that it overall had more parameters than
EM-TD3. This is done to eliminate a potential advantage of our approach stem-
ming from a higher representational capacity. The tuned hyperparameters are
given in Table B.1. To represent the value functions and policies we use fully
connected multi-layer perceptrons (MLPs) with two hidden layers with 64 units
each. As activations we use ReLLU on all intermediate layers, and tanh activations
on the output. The values are then scaled to the torque limits per dimension.
In EM, SP and PPT we use a separate network for each policy. For our multi-
head baseline we share the hidden layers between tasks, but use separate input
and output layers per task. Additionally, we increase the size of the first hidden
layer to 96 in the multi-head approach, such that it has a similar total number
of parameters as our EM approach. For the Multi-Out baseline we use the same
hyper-parameters as in the Multi-Head baseline, but increase the network size to
(800,600,9 - 1). For SP and PPT we reuse the hyper-parameters from our EM
approach. The different network structure of each approach are shown in Figure
B.1. During the M-step, we train the agent for 5x 10* steps per policy and during
the E-step we evaluate each agent on each task by running 20 episodes without
added exploration noise.

B.1.3 BipedalWalker

For the BipedalWalker tasks we look at two different sets of tasks. The first set
of tasks consists of different reward functions with mostly similar environments,
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(a) The normal network structure, used in EM-TD3, PPT and SP.

o, Y4
o, Y,
x h, h,
o, Ys
o, A

(b) The Multi-Out structure. Here only the output layers are task-specific.

% hia o, Ys
X, h, 0, Y
h,

X, h1‘3 0, Y3
X4 h1 4 04 y4

(¢) The Multi-Head structure, identical to Eramo et al. [59]. Here both output and
input layers are task-specific, but a shared layer is used between them.

Figure B.1: Shown are the three different network structure used in our Pendulum
and Bipedal Walker experiments. They are all shown for k£ = 4 tasks, while in
practice the number of tasks varies by settings. Yellow layers are shared among
tasks while blue layers are task-specific. In the case of the actor, x := s,y := a,
while in the case of the critic x := (s,a),y := Q(s, a).
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Table B.1: Hyperparamters for pendulum experiments.

Hyperparameter EM-TD3 Multi-head TD3
learning-rate « 3x 1073 3x 1073
batch-size b 128 128

update-rate u 1 1
policy-update-frequency 3 3

n - EM 4 -

network size 4-(64,64,1) (9-96,64,9-1)
exploration noise o 0.05 0.05

exploration noise clipping [—0.5,0.5] [—0.5,0.5]
target policy smoothing noise ¢ 0.1 0.1

buffer-size 2 x 10% per policy 2 x 10° per task
decay ~ 0.99 0.99

T 5 x 10% -

inspired by track and field events. The tasks are jumping up, jumping a long
distance, runs for different distances and a run with obstacles. In all tasks a
reward of —el|al|1 is given to minimize the used energy. The position of the hull
of the bipedal walker is denoted as (x,y). In the jump up task a reward of y — |z|
is given upon landing, and € = 3.5 x 10~*. For the long jump task a reward
of x — x¢ is given upon landing, with zg being the hull position during the last
ground contact, € = 3.5 x 10™%. The three runs consist of a sprint over a length
of 67 units, with € = 3.5 x 1074, a run over 100 units, with ¢ = 3.5 x 1074, and a
long run over 200 units with e = 6.5 x 10~%. The hurdles task is identical to the
long run, but every 4 units there is an obstacle with a height of 1. Additionally,
a reward of 0.1 — a reward proportional to the velocity of the agent in the
x-direction — is given during the run and hurdle tasks, to reward movement to
the right.

The second set of tasks consists of varying obstacles and robot parameters.
We vary the length of the legs in {25,35,45} and either use no obstacles, or
obstacles with a spacing of 2 or 4 units apart and height of 1. This results in
a total of 9 tasks. Here we use the standard reward for the BipedalWalker task
r = 4.3% — 5|0| — ||a||1 with 0 being the angle of the walker head. Additionally,
in all experiments r = —100 is given if the robot falls over or moves to far to the
left.

Hyperparameters

Hyperparameters for our EM-TD3 and multi-head TD3 approaches were tuned on
the track and field task set by grid search over o = {1 x 1073, 3 x 1074, 1% 10*4},
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batch-size b = {100, 1000} and update-rate u = {1, 3,5}, u specifying the number
of collected time-steps after which the value-function is updated. We reuse the
optimal parameters found here on the task set with varying leg lengths and
obstacles. For the SP and PPT baselines we reused the parameters from EM-
TD3. We increased the network size for multi-head TD3, so that it overall had
more parameters than EM-TD3. All hyperparameters are given in Table B.2. For
the Multi-Out baseline we use the same hyper-parameters as in the Multi-Head
baseline, but increase the network size to (800,600,9-1). During the M-step, we
train the EM agent with 2x 10 steps per policy and during the E-step we evaluate
each agent on each task by running 20 episodes without added exploration noise.

Table B.2: Hyperparameters for BipedalWalker experiments.

Hyperparameter EM-TD3 Multi-head TD3
learning-rate 1x1073 1x1073
batch-size 1000 1000
update-rate 3 5
policy-update-frequency 3 3
n - EM 4 -
network size 4 - (400, 300, 1) (6 - 400,400,6 - 1)
exploration noise o 0.1 0.1
exploration noise clipping [—0.5,0.5] [—0.5,0.5]
target policy smoothing noise o 0.2 0.2
buffer-size 5 x 105 per policy 5 x 105 per task
decay 0.99 0.99
Tm 2 x 10° -

B.1.4 Atari

To test our approach on a more complex task, we evaluate it on a subset of
the Atari games. The set of chosen games consists of Alien, Assault, BankHeist,
ChopperCommand, DemonAttack, JamesBond, MsPacman, Phoenix, RiverRaid,
Spacelnvaders, WizardOfWor and Zaxxon. As stated above, this task set is
similar to the set of games used in [58], but without tasks requiring a large
amount of exploration to save computation time.

Our implementation is based on the Implicit Quantile Network (IQN) imple-
mentation in the Dopamine framework [16, 65|. As hyperparameters we use the
default values recommended by Dopamine for Atari games, except the changes
listed below: Due to the different action spaces, we use a separate replay buffer
for each game, as well as a separate output, both for our EM, multi-head and
PPT approaches. Due to the nature of the reparameterization layer in IQN, dif-
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Figure B.2: Shown is the structure of our atari network, used in our EM approach
and multi-head baseline. U(0, 1) here denotes a uniform distribution between 0
and 1, which is used in the reparameterization. All layers are shared between
tasks except the output layer, shown in blue. Shown are the default parameter
counts, in practice we scale the layers to have the same number of total parameters
per approach.

ferent multi-head structures could be considered. We show our chosen network
structure in Figure B.2. We reduce the size of the replay buffer to 3 x 10° com-
pared to 1 x 10% in the original paper, to reduce the memory demand. We use
the normal NatureDQN network, but scale the size of the layers to ensure that
each approach has a similar number of parameters. For our EM approach, we use
Ty = 2.5x10° trainings steps per M-step, and evaluate all policies on all tasks for
27000 steps in the E-step, using the greedy policy without random exploration.
In both EM and the multi-head approach, we record how many transitions were
performed in each M-Step and sample the task with the least transitions as next
training task. This is done to ensure a similar amount of transitions and training
steps per game, as episode lengths vary. This approach was proposed in [58].



APPENDIX TASK CLUSTERING B-7

B.2 Additional Results

B.2.1 Bipedal Walker

In Figure B.3 the assignments for 4 randomly chosen trials on the track and
field task set are shown. We can see that in all trials the runs over different
distances are grouped together with the long jump task. This is likely due to
these tasks aligning well, as they both favor movements to the right. It is possible
to learn the hurdles task with the same policy as the runs, due to the available
LIDAR inputs. The hurdle task therefore sometimes switches between policies,
but usually is learned by a separate policy. The jump up task is very different
from the other tasks, as it is the only one not to involve movement to the right,
and is therefore assigned to a separate policy.

In Figure B.4 the assignments for 4 randomly chosen trials on the leg-length
and obstacle task set are shown. As illustrated by the good performance of
the SP approach shown in Figure 4.5, it is possible to learn a nearly optimal
behavior with a single policy here. This makes learning a meaningful clustering
significantly harder and sometimes leads to a single policy becoming close to
optimal on all tasks, as in Trial 2. In most other trials the task set is separated
into two or three different clusters based on the different leg lengths.

B.2.2 Atari

In Figure B.6 the assignments of all three trials of our approach on the Atari task
set are shown. While we see a consistency in assignments, we cannot identify a
clearly repeated clustering across trial. We assume this is due to the high diversity
of tasks preventing the identification of clearly distinguishable clusters. This lack
of clearly distinguishable clusters might also be the reason for failing to reach the
performance of PPT. Yet, the specialization of policies in our approach helps to
avoid negative transfer as seen in Figure 4.6.

In Section 4.3.3 we reported the median reward across games, as is common
for Atari games. This is done to avoid a large difference in a single game skewing
the results significantly. However, because we stated our goal as achieving the
highest mean reward in the beginning of our thesis, we show the mean reward
in the top of Figure B.5 and below it we again show the rewards per task . We
notice that in this metric PPT outperforms our proposed approach, both with
n =4 and n = 8. When we look at the rewards per game, we can see that main
reason for that is PPT outperforming our approaches by 10x in JamesBond while
the reward is similar in the other games.



APPENDIX TASK CLUSTERING

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

Hurdles
Marathon
Run

Sprint
Jump Long
Jump Up

0.00

0.00

0.00

0.00

0.00

0.00

o © 60 e 0 0

o

0.25

0.25

e o . (N}
050 075 1.00 125 1.50
1e7

eveoe

050 075 1.00 125 1.50

Environment Steps

1e7

Trial 1

0.25

0.25

0.25

0.25

0.25

0 025

o oo ° °
0000000 OGONGCONOONOINS
9000000000000 0
000000000000 000
0oee0ccccncccscoe
0.50 0.75 1.00 1.25 1.50
1e7
L]
o000 o000 oo
050 075 100 125 1.50
Environment Steps le7

0.50 0.75 1.00 1.25 1.50
1e7

ecoe o0 eseoe

0.50 0.75 1.00 1.25 1.50
Environment Steps 1e7

°

0.50 0.75 1.00 1.25 1.50
1e7

e eoo ecccecoe

050 075 100 125 1.50
Environment Steps 1e7

- 400 ¥ o o0 - 400
o ec0eo0cvevcee
- 200 ° LRI NN ) - 200
_o ° 000000000000 _o
o ee0e0c0cccoe
- 200 - 200
0.00 025 0.50 0.75 1.00 1.25 1.50
1e7
- 400 oo e o XXX ~ 400
- 200 - 200
-0 -0
- 200 - 200
0.00 025 0.50 0.75 1.00 1.25 1.50
Environment Steps 1e7
Trial 2
~ 400 LX) oe0e o000 — 400
- 200 Lo - 200
-0 ¢ -0
o
- 200 ° - 200
0.00 025 0.50 0.75 1.00 1.25 1.50
1e7
- 400 - 400
- 200 - 200
-0 -0
- 200 . ° - 200
0.00 025 050 0.75 1.00 1.25 1.50
Environment Steps 1e7
Trial 3
eo o () (X
- 200 A A - 200
.
-0 X -0
. °
- 200 e oo - 200
0.00 025 0.50 0.75 1.00 1.25 1.50
1e7
- 200 5 - 200
0000000000000 000O o
-0 ee0evenencncccoe o -0
® ®e0000000000000 o
- 200 - 200
0.00 025 0.50 0.75 1.00 1.25 1.50
Environment Steps 1e7
Trial 4
- 400 e e S0 - 400
060e0c0cncnccccncne
- 200 (XN NN NNNNNNNNXNNXNN NN - 200
_o 0000000000000 000000 _o
0e0e0cccccnccccncoe
- 200 - 200
0.00 025 050 0.75 1.00 1.25 1.50
1e7
- 400 - 400
- 200 - 200
-0 -0
- 200 eececcse - 200
0.00 025 050 0.75 1.00 1.25 1.50
Environment Steps 1e7

B-8

Figure B.3: Shown are the assignments from 4 randomly picked trials on the
track and field BipedalWalker task set.
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Figure B.4: Shown are the assignments from 4 randomly picked trials on the
first BipedalWalker task set. [ refers to the lenghts of the legs, o refers to the

frequency of obstacles.
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PPT outperforming the EM approaches in JamesBond.



APPENDIX TASK CLUSTERING

Riyerraid
James én
Chopper@T1 man
ni

Demo
Spaceln 2 s
e\ﬂzgrd .0{
R
MsPacman

Ri gérraid
J
Chopper%mesmgp\
ni
Demo
Spaceln 2 L#s
9\% rd [o]

an iS
MsPacAnEgR

Riyerraid
James R
Chopper@pﬁ an
ni
DemonAttac|
Spaceln 2 Llj's
s
MsPaéAngR

Zo358

Ryerraid

Jame éﬁ
Chopper?{n% nand
DemonAt; E:'F(
Spaceln P =L|J's
9\% rd Dlt'
M afien
MsPacman

Ryerr id

Ji Hea‘éxalg
Chopperﬂf% nan
Demor/i i E:'F(
ssau

Smcel% ers

PRIt
MsPaéAm'gR

Riyerraid

ChoppeJr@negrﬁgP\
Demo
chelngssﬁasrs
Iﬁé% |eia%n
MsPacman

o
N
N
w

1e7

o
-
N
w

o
-
N
w

Trial 1
~0.75 croppelTEREEN]
-0.50 Demol AU
Seﬂcel&g&%&s
-0.25 Bon Fis{
Alien
- 0.00 MsPacman
- 1.00 Ri a?E‘graid
-0.75 Choppéjri{nesmgra
- 0.50 Demo ss?aﬁﬁ
chelr& rs
-o2s I
Aﬁ'en
- 0.00 MsPacman
Trial 2
- 1.00 Ri at?érraid
-0.75 ChOppeJrgneSngll
- 0.50 Demo Attac
chelr& rs
-o2s WL
Aﬁen
- 0.00 MsPacman
- 1.00 Ri géraid
-0.75 Choppe‘{%mesmggll
-0.50 Demol A
S%celrlagﬁ%gs
-0.25 Bn FisE
Alien
- 0.00 MsPacman
Trial 3
- 1.00 Ri ael):lgraid
-0.75 Choppe‘{%nesm(é)ﬁI
-0.50 Demol atac
S%celrlagﬁ%gs
-0.25 zgan FisE
Alien
- 0.00 MsPacman
- 1.00 Riyerraid
-0.75 Choppe‘{%mesmgﬁ
-0.50 Demol A
chella rs
- 025 “BhAkHeid
- 0.00 MsPacmlgn

e000n: esocons oo e ¥

0 1 2 3
1e7
[ SSSISL L SUuSiel SEuuE )
:..O.

0 1 2 3
1e7

JRCYI S—— Y

o ¢

L X I J

[ )

0 1 2 3
1e7

B-11

-1.00
-0.75
- 0.50
-0.25
-0.00

-1.00
-0.75
- 0.50
-0.25
-0.00

-1.00
-0.75
- 0.50
-0.25
-0.00

-1.00
-0.75
-0.50
-0.25
-0.00

-1.00
-0.75
-0.50
-0.25
-0.00

-1.00
-0.75
- 0.50
-0.25
-0.00

Figure B.6: Shown are the assignments of all three trial that were run on the set
of Atari games. The color represents the human-normalized score per game.
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